

PROBABILITY AND STATISTICS & COMPLEX VARIABLES (MA301BS) COURSE PLANNER

I. COURSE OVERVIEW:

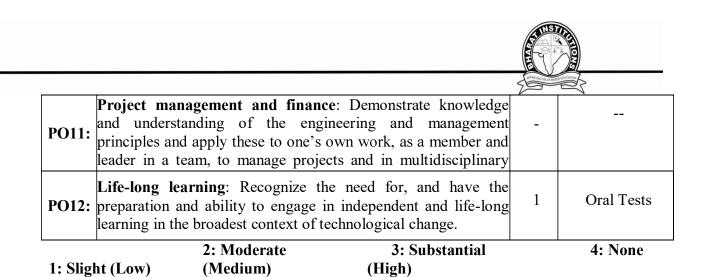
The students will improve their ability to think critically, to analyze a real problem and solve it using a wide array of mathematical tools. They will also be able to apply these ideas to a wide range of problems that include the Engineering applications.

II. PREREQUISITE:

- 1. Basic knowledge of Probability.
- 2. Basic knowledge of Statistical concepts.
- 3. Basic knowledge of Differentiation and Integration.
- 4. Basic knowledge of calculation of basic Complex variables.

III. COURSE OBJECTIVE: To learn

1.	The ideas of probability and random variables and various discrete and continuous
	probability distributions and their properties
2.	The basic ideas of statistics including measures of central tendency, correlation and
	regression
3.	The statistical methods of studying data samples.
4.	Differentiation and integration of complex valued functions.
5.	Evaluation of integrals using Cauchy's integral formula and Cauchy's residue theorem.
6.	Expansion of complex functions using Taylor's and Laurent's series


IV.COURSE OUTCOMES: After learning the contents of this paper the student must be able to

S. No	Description	Bloom's Taxonomy Level
1.	Understand the basic terms of Probability and solve problems involving random variables.	Understand, Apply (Level 2, Level 3)
2.	The ability to construct and express the Probability Distributions and Density functions.	Understand, Apply (Level 2, Level 3)
3.	Formulate and apply statistical methods for analyzing for Testing of Hypothesis	Apply, Create (Level 4, Level 6)
4.	Analyze the complex function with reference to their analyticity, integration using Cauchy's integral and residue theorems	Analyze, Apply (Level 4, Level 3)
5.	Taylor's and Laurent's series expansions of complex function.	Understand, Apply (Level 2, Level 3)

V. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes	Level	Proficiency Assessed by
PO1	Engineering knowledge : To Apply the knowledge of mathematics, science, engineering fundamentals, and Mechanical Engineering to the solution of complex engineering problems encountered in modern engineering		Assignments and Tutorials.
PO2	Problem analysis: Ability to Identify, formulate, review research literature, and analyze complex engineering problems related to Mechanical Engineering reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	2	Assignments, Tutorials and Exams.
РОЗ	Design/development of solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	3	Assignments, Tutorials and Exams.
PO4:	Conduct investigations of complex problems : Use research- based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	2	Assignments, Tutorials and Mock Exams.
PO5:	Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern Mechanical Engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.	-	
PO6:	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the Mechanical Engineering professional engineering practice.	-	
PO7:	Environment and sustainability : Understand the impact of Mechanical Engineering professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.	-	
PO8:	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering		
PO9:	Individual and team work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.		
PO10:	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.		

VI. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes	Level	Proficiency assessed by
PSO1	Professional Skills: The student will be able to apply the knowledge of Mathematics, Sciences and engineering fundamentals to formulate, analyze and provide solutions to the problems related to Mechanical engineering and communicate them effectively to the concerned.	2	Assignments, Tutorials and Exams.
PSO2	Problem-Solving Skills: Design mechanical systems in various fields such as machine elements, thermal, manufacturing, industrial and inter-disciplinary fields by using various engineering/technological tools to meet the mercurial needs of the industry and society at large.	1	Assignments, Tutorials and Mock Exams.
PSO3	Practical implementation and testing skills: The ability to grasp the latest development, methodologies of mechanical engineering and possess competent knowledge of design process, practical proficiencies, skills and knowledge of programme and developing ideas towards research.	-	
1: Sligh	t (Low) 2: Moderate (Medium) 3: Substantial	(High)	4: None

VII. SYLLABUS:

UNIT-I: Basic Probability

Probability spaces, conditional probability, independent events, and Bayes' theorem,Random variables: Discrete and continuous random variables, Expectation of Random Variables, Moments, Variance of random variables.

UNIT-II: Probability distributions

Binomial, Poisson, evaluation of statistical parameters for these distributions,

Poisson approximation to the binomial distribution, Continuous random variables and their properties, distribution functions and density functions,Normal and exponential, evaluation of statistical parameters for these distributions.

UNIT-III: Testing of Hypothesis

Test of significance: Basic of testing of Hypothesis. Null and alternate Hypothesis, types of errors, level of significance, critical region. Large sample test for single proportion, difference of proportions, single mean, difference of means ;small sample tests: Test for single mean, difference of means and test for ratio of variances.

UNIT-IV: Complex Variables (Differentiation)

Limit, Continuity and Differentiation of Complex functions, Analyticity, Cauchy-Riemann equations (without proof), finding harmonic conjugate; elementary analytic functions (exponential, trigonometric, logarithm) and their properties.

UNIT-V: Complex Variables (Integration)

Line integral, Cauchy's theorem, Cauchy's Integral formula, Zeros of analytic functions, Singularities, Taylor's series, Laurent's series; Residues, Cauchy Residue theorem, Conformal mappings, Mobius transformations and their properties

GATE SYLLABUS:

Basic Probability

Probability spaces, conditional probability, independent events, and Bayes' theorem, Random variables: Discrete and continuous random variables, Expectation of Random Variables, Moments, Variance of random variables.

Probability distributions

Binomial, Poisson, evaluation of statistical parameters for these distributions,

Poisson approximation to the binomial distribution, Continuous random variables and their properties, distribution functions and density functions, Normal and exponential, evaluation of statistical parameters for these distributions.

Complex Variables (Differentiation)

Limit, Continuity and Differentiation of Complex functions, Analyticity, Cauchy-Riemann equations (without proof), finding harmonic conjugate; elementary analytic functions (exponential, trigonometric, logarithm) and their properties.

Complex Variables (Integration)

Line integral, Cauchy's theorem, Cauchy's Integral formula, Zeros of analytic

functions, Singularities, Taylor's series, Laurent's series; Residues, Cauchy Residue theorem, Conformal mappings, Mobius transformations and their properties.

VIII. LESSON PLAN-COURSE SCHEDULE:

Lecture No.	Week No	Unit	ΤΟΡΙϹ	Link for Pdf	Link for PDF	Link for Small Projects/ Numerica ls(if any)	Course learning outcomes	Refer ence
1.	1		Sample spaces, Types of Events	https://dri ve.google.c om/drive/f olders/11H h13CrSJ_ KZXvp2Yi nMS6eDsy LOfy- o?usp=sha ring	https://dri ve.google. com/drive /folders/1 IHh13Cr SJ_KZXv p2YinMS 6eDsyLOf y- o?usp=sh aring	https://dri ve.google. com/drive /folders/1 IHh13Cr SJ_KZXv p2YinMS 6eDsyLOf y	Understa nd sample spaces and events	T1,T2 ,R1
2.	1	1	Conditional probability	https://dri ve.google.c om/drive/f olders/11H h13CrSJ_ KZXvp2Yi nMS6eDsy LOfy- o?usp=sha ring	https://dri ve.google. com/drive /folders/1 IHh13Cr SJ_KZXv p2YinMS 6eDsyLOf y- o?usp=sh aring	https://dri ve.google. com/drive /folders/1 IHh13Cr SJ_KZXv p2YinMS 6eDsyLOf y	Apply Condition al probabilit y	T1,T2 ,R1

3.		P	roblems	https://dri ve.google.c om/drive/f olders/11H h13CrSJ_ KZXvp2Yi nMS6eDsy LOfy- o?usp=sha ring	https://dri ve.google. com/drive /folders/1 IHh13Cr SJ_KZXv p2YinMS 6eDsyLOf y- o?usp=sh	https://dri ve.google. com/drive /folders/1 IHh13Cr SJ_KZXv p2YinMS 6eDsyLOf y	Apply Condition al probabilit y	T1,T2 ,R1
4.		В	aye's theorem	https://dri ve.google.c om/drive/f olders/11H h13CrSJ_ KZXvp2Yi nMS6eDsy LOfy- o?usp=sha ring	aring https://dri ve.google. com/drive /folders/1 IHh13Cr SJ_KZXv p2YinMS 6eDsyLOf y- o?usp=sh aring	https://dri ve.google. com/drive /folders/1 IHh13Cr SJ_KZXv p2YinMS 6eDsyLOf y	Apply Baye's theorem	T1,T2 ,R1
5.	2	Р	roblems	https://dri ve.google.c om/drive/f olders/11H h13CrSJ_ KZXvp2Yi nMS6eDsy LOfy- o?usp=sha ring		https://dri ve.google. com/drive /folders/1 IHh13Cr SJ_KZXv p2YinMS 6eDsyLOf y	Apply Baye's theorem	T1,T2 ,R1

					<	(MEANING WILLIE INTED EDUCATION	
6.		Random variables: Discrete r.v	https://dri ve.google.c om/drive/f olders/11H h13CrSJ_ KZXvp2Yi nMS6eDsy LOfy- o?usp=sha ring	https://dri ve.google. com/drive /folders/1 IHh13Cr SJ_KZXv p2YinMS 6eDsyLOf y- o?usp=sh aring	https://dri ve.google. com/drive /folders/1 IHh13Cr SJ_KZXv p2YinMS 6eDsyLOf y	Understa nd Random variables	T1,T2 ,R1
7.		Continuous random variables	https://dri ve.google.c om/drive/f olders/11H h13CrSJ_ KZXvp2Yi nMS6eDsy LOfy- o?usp=sha ring	https://dri ve.google. com/drive /folders/1 IHh13Cr SJ_KZXv p2YinMS 6eDsyLOf y- o?usp=sh aring	https://dri ve.google. com/drive /folders/1 IHh13Cr SJ_KZXv p2YinMS 6eDsyLOf y	Understa nd Random variables	T1,T2 ,R1

						14 / J	
8.		Problems	https://dri ve.google.c om/drive/f olders/11H h13CrSJ_ KZXvp2Yi nMS6eDsy LOfy- o?usp=sha ring	https://dri ve.google. com/drive /folders/1 IHh13Cr SJ_KZXv p2YinMS 6eDsyLOf y- o?usp=sh aring	https://dri ve.google. com/drive /folders/1 IHh13Cr SJ_KZXv p2YinMS 6eDsyLOf y	Apply Random variables	T1,T2 ,R1
9.		Expectation of Random Variables	https://dri ve.google.c om/drive/f olders/11H h13CrSJ_ KZXvp2Yi nMS6eDsy LOfy- o?usp=sha ring	https://dri ve.google. com/drive /folders/1 IHh13Cr SJ_KZXv p2YinMS 6eDsyLOf y- o?usp=sh aring	https://dri ve.google. com/drive /folders/1 IHh13Cr SJ_KZXv p2YinMS 6eDsyLOf y	Evaluate Random variables	T1,T2 ,R1
10.	3	Moments: Central moments	https://dri ve.google.c om/drive/f olders/1IH h13CrSJ_ KZXvp2Yi nMS6eDsy LOfy- o?usp=sha ring	https://dri ve.google. com/drive /folders/1 IHh13Cr SJ_KZXv p2YinMS 6eDsyLOf y- o?usp=sh aring	https://dri ve.google. com/drive /folders/1 IHh13Cr SJ_KZXv p2YinMS 6eDsyLOf y	Evaluate & Apply Random variables	T1,T2 ,R1

TISTA
ET DE
WFARTING WILLE ENED EDUCATION

						<	(NFARTING INCLIFE INSEC) ISTUCATION	
				https://dri	https://dri	https://dri	Evaluate	
				ve.google.c	ve.google.	<u>ve.google.</u>	& Apply	
				om/drive/f	com/drive	<u>com/drive</u>	Random	
				olders/1IH	/folders/1	/folders/1	variables	
				h13CrSJ	IHh13Cr	IHh13Cr		
11.			Moments:	KZXvp2Yi	SJ KZXv	SJ KZXv p2YinMS		T1,T2
			Raw moments	nMS6eDsy	p2YinMS	<u>6eDsyLOf</u>		,R1
				LOfy-	6eDsyLOf	<u>V</u>		
				o?usp=sha	y-	–		
				ring	o?usp=sh			
				Ting	-			
	-	·			aring			
						https://dri ve.google.		
						com/drive		
						/folders/1		
12.			Mock test-1			IHh13Cr		
						SJ KZXv		
						p2 Y inMS		
						6eDsyLOf		
						У		
		1	Unit –	II : Probabil			.	1
				https://dri	https://dri	https://dri	Understan	
				ve.google.c	ve.google.	ve.google. com/drive	d &	
			Binomial	om/drive/f	com/drive	/folders/1	Evaluate	
			distribution-	olders/1IH	/folders/1	IHh13Cr	Binomial	
13.			Evaluation of	h13CrSJ_	IHh13Cr	SJ KZXv	distribution	T1,T
15.			statistical	KZXvp2Yi	SJ_KZXv	p2 Y inMS		2,R1
				nMS6eDsy	p2YinMS	6eDsyLOf		
			parameters	LOfy-	6eDsyLOf	y		
				o?usp=sha	yo?usp=s			
	1			ring	haring			
	4	2		https://dri	https://dri	https://dri	Apply	
				ve.google.c	ve.google.	ve.google.	Binomial	
				om/drive/f	com/drive	com/drive	distribution	
				olders/1IH	/folders/1	/folders/1		
				h13CrSJ	IHh13Cr	IHh13Cr		T1,T
14.			Problems	KZXvp2Yi	SJ KZXv	SJ_KZXv		2,R1
				nMS6eDsy	p2YinMS	p2YinMS		2,111
				LOfy-	6eDsyLOf	6eDsyLOf y		
				o?usp=sha	·	J		
				-	y- o?uan-ah			
				ring	o?usp=sh			

					<	Je es	
				aring			
15.		Poisson distribution- Evaluation of statistical parameters	https://dri ve.google.c om/drive/f olders/11H h13CrSJ_ KZXvp2Yi nMS6eDsy LOfy- o?usp=sha ring	https://dri ve.google. com/drive /folders/1 IHh13Cr SJ_KZXv p2YinMS 6eDsyLOf y- o?usp=sh aring	https://dri ve.google. com/drive /folders/1 IHh13Cr SJ_KZXv p2YinMS 6eDsyLOf y	Understan d & Evaluate Poisson distribution	T1,T 2,R1
			I	Bridge class	s-1	I	
16.	5	Problems	https://dri ve.google.c om/drive/f olders/11H h13CrSJ_ KZXvp2Yi nMS6eDsy LOfy- o?usp=sha ring	https://dri ve.google. com/drive /folders/1 IHh13Cr SJ_KZXv p2YinMS 6eDsyLOf y- o?usp=sh aring	https://dri ve.google. com/drive /folders/1 IHh13Cr SJ_KZXv p2YinMS 6eDsyLOf y	Apply Poisson distribution	T1,T 2,R1

					ET /	
				<	INFARTING VALUE EARED VIDICATION	
17.	Poisson approximation to the B.D	https://dri ve.google.c om/drive/f olders/11H h13CrSJ_ KZXvp2Yi nMS6eDsy LOfy- o?usp=sha ring	https://dri ve.google. com/drive /folders/1 IHh13Cr SJ_KZXv p2YinMS 6eDsyLOf y- o?usp=sh aring	https://dri ve.google. com/drive /folders/1 IHh13Cr SJ_KZXv p2YinMS 6eDsyLOf y	Evaluate P.D with B.D	T1,T 2,R1
18	Distribution functions and density functions	https://dri ve.google.c om/drive/f olders/11H h13CrSJ_ KZXvp2Yi nMS6eDsy LOfy- o?usp=sha ring	https://dri ve.google. com/drive /folders/1 IHh13Cr SJ_KZXv p2YinMS 6eDsyLOf y- o?usp=sh aring	https://dri ve.google. com/drive /folders/1 IHh13Cr SJ KZXv p2YinMS 6eDsyLOf <u>y-</u> o?usp=sh aring	Understan d Distributio n functions and density functions	T1,T 2,R1
19.			Bridge class	-2	I	
20.	Normal distribution- Evaluation of statistical parameters	https://dri ve.google.c om/drive/f olders/11H h13CrSJ_ KZXvp2Yi nMS6eDsy LOfy- o?usp=sha ring	https://dri ve.google. com/drive /folders/1 IHh13Cr SJ_KZXv p2YinMS 6eDsyLOf y- o?usp=sh aring	https://dri ve.google. com/drive /folders/1 IHh13Cr SJ_KZXv p2YinMS 6eDsyLOf y- o?usp=sh aring	Understan d & Evaluate Normal distribution	T1,T 2,R1

							Anertike Mini BALED EDUCATION	
				https://dri	https://dri	https://dri	Apply	
				ve.google.c	ve.google.	ve.google.	Normal	
				om/drive/f	com/drive	com/drive	distribution	
				olders/1IH	/folders/1	/folders/1		
				h13CrSJ	IHh13Cr	IHh13Cr		T1 T
21.			Problems	KZXvp2¥i	SJ KZXv	SJ KZXv		T1,T
				nMS6eDsy	p2 YinMS	p2 YinMS		2,R1
				LOfy-	6eDsyLOf	6eDsyLOf		
				o?usp=sha	y-	y-		
				ring	o?usp=sh	o?usp=sh		
				0	aring	aring		
	6			https://dri	https://dri	https://dri	Understan	
				ve.google.c	ve.google.	ve.google.	d &	
				om/drive/f	com/drive	com/drive	Evaluate	
			Exponential	olders/1IH	/folders/1	/folders/1	Exponentia	
			distribution-	h13CrSJ	IHh13Cr	IHh13Cr	1	T 1 T
22.			Evaluation of	KZXvp2Yi	SJ KZXv	SJ KZXv	distribution	T1,T
			statistical	nMS6eDsy	p2YinMS	p2YinMS		2,R1
			parameters	LOfy-	6eDsyLOf	6eDsyLOf		
			1	o?usp=sha	y-	y-		
				ring	o?usp=sh	o?usp=sh		
				8	aring	aring		
					U	0		
					Bridge class	-3		
	1		Unit	– III : Testing				
				https://dri	https://dri	https://dri	Understan	
			Test of	ve.google.c		0 0	d Test of	
			significance:	om/drive/f olders/1IH	com/drive /folders/1	com/drive /folders/1	Hypothesis	
			Basics of	h13CrSJ	IHh13Cr	IHh13Cr		
	-		testing of	KZXvp2Yi	SJ KZXV	SJ KZXV		T1,R
23.	7	3	hypothesis,	nMS6eDsy	p2YinMS	p2YinMS		1,R2
			types of errors, level of	LOfy-	6eDsyLOf	6eDsyLOf		
			significance,	o?usp=sha	y-	у-		
			critical region.	ring	o?usp=sh	o?usp=sh		
					aring	aring		

					<	WPARTINO VALUE (AGED TIDUCATION	
24.		Test of significance(La rge samples): Test for single proportion.	https://dri ve.google.c om/drive/f olders/1IH h13CrSJ_ KZXvp2Yi nMS6eDsy LOfy- o?usp=sha ring	https://dri ve.google. com/drive /folders/1 IHh13Cr SJ_KZXv p2YinMS 6eDsyLOf y- o?usp=sh aring	https://dri ve.google. com/drive /folders/1 IHh13Cr SJ_KZXv p2YinMS 6eDsyLOf y- o?usp=sh aring	Evaluate Test for single proportion.	T1,R 1,R2
25.		Test for difference of proportions.	https://dri ve.google.c om/drive/f olders/11H h13CrSJ_ KZXvp2Yi nMS6eDsy LOfy- o?usp=sha ring	https://dri ve.google. com/drive /folders/1 IHh13Cr SJ_KZXv p2YinMS 6eDsyLOf y- o?usp=sh aring	https://dri ve.google. com/drive /folders/1 IHh13Cr SJ_KZXv p2YinMS 6eDsyLOf y- o?usp=sh aring	Evaluate Test for difference of proportions	T1,R 1,R2
				Bridge class	-4		
26.	8	Problems	https://dri ve.google.c om/drive/f olders/1IH h13CrSJ_ KZXvp2Yi nMS6eDsy LOfy- o?usp=sha ring	https://dri ve.google. com/drive /folders/1 IHh13Cr SJ_KZXv p2YinMS 6eDsyLOf y- o?usp=sh aring	https://dri ve.google. com/drive /folders/1 IHh13Cr SJ_KZXv p2YinMS 6eDsyLOf y- o?usp=sh aring		T1,R 1,R2

				<	UNPARTARE LALLIE BASED EDUCATION			
		https://dri	https://dri	https://dri	Evaluate			
		ve.google.c	ve.google.	ve.google.	Test for			
		om/drive/f	com/drive	com/drive	single			
		olders/1IH	/folders/1	/folders/1	mean			
		h13CrSJ_	IHh13Cr	IHh13Cr				
	Test for single	KZXvp2Yi	SJ_KZXv	SJ_KZXv		T1,R		
27.	mean	nMS6eDsy	p2YinMS	p2YinMS		1,R2		
		LOfy-	6eDsyLOf	6eDsyLOf		1,102		
		o?usp=sha	y-	y-				
		ring	o?usp=sh	o?usp=sh				
		_	aring	aring				
			U					
		https://dri	https://dri	https://dri	Evaluate			
		ve.google.c	ve.google.	ve.google.	Test for			
		om/drive/f	com/drive	com/drive	difference			
		olders/1IH	/folders/1	/folders/1	of means			
			IHh13Cr	IHh13Cr	or means			
		h13CrSJ_						
	Test for	KZXvp2Yi	SJ_KZXv	SJ_KZXv		T1,R		
28.	difference of	nMS6eDsy	p2YinMS	p2YinMS		1,R2		
	means	LOfy-	6eDsyLOf	6eDsyLOf		1,12		
		o?usp=sha	y-	y-				
		ring	o?usp=sh	o?usp=sh				
			aring	aring				
			Duide 1	. <i>E</i>		<u> </u>		
		Bridge class-5						

$30. 9 \left(\begin{array}{c c c c c c } \hline & \mathbf{https://dri} & https:/$								
30.9Test of significance(S mall samples): Test for single mean(Student' s t- Test)https://dri ve.google. on/drive/fhttps://dri ve.google. com/drive (folders/1 SJ_KZXv SJ_KZXV SJ_	29.		Problems	ve.google.c om/drive/f olders/11H h13CrSJ_ KZXvp2Yi nMS6eDsy	ve.google. com/drive /folders/1 IHh13Cr SJ_KZXv p2YinMS	ve.google. com/drive /folders/1 IHh13Cr SJ_KZXv p2YinMS	Apply Test for difference	
30.9significance(S mall samples): Test for single mean(Student' s t- Test)olders/1IH h13CrSJ_ IHh13Cr/folders/1 IHh13Crmean Hh13CrT1,R I,R230.97est for single mean(Student' s t- Test)NS6eDsy O?usp=sha ringp2YinMS o?usp=shp2YinMS o?usp=shT1,R 1,R231.111 <th></th> <td></td> <td>Test</td> <td>ring https://dri ve.google.c</td> <td>o?usp=sh aring https://dri ve.google.</td> <th>o?usp=sh aring https://dri ve.google.</th> <td>d Test for</td> <td></td>			Test	ring https://dri ve.google.c	o?usp=sh aring https://dri ve.google.	o?usp=sh aring https://dri ve.google.	d Test for	
31.Test for difference of meansve.google.c om/drive/fve.google.c com/drive om/drive folders/1Test for difference of meansTest for difference of meansTest for difference of meansTest for difference of means31.32.33.33.34.35.35.35.35.35.35.35.35.	30.	9	significance(S mall samples): Test for single mean(Student'	h13CrSJ_ KZXvp2Yi nMS6eDsy LOfy- o?usp=sha	IHh13Cr SJ_KZXv p2YinMS 6eDsyLOf y- o?usp=sh	IHh13Cr SJ_KZXv p2YinMS 6eDsyLOf y- o?usp=sh	mean	
Bridge class-6	31.		difference of	ve.google.c om/drive/f olders/11H h13CrSJ_ KZXvp2Yi nMS6eDsy LOfy- o?usp=sha	https://dri ve.google. com/drive /folders/1 IHh13Cr SJ_KZXv p2YinMS 6eDsyLOf y- o?usp=sh aring	https://dri ve.google. com/drive /folders/1 IHh13Cr SJ_KZXv p2YinMS 6eDsyLOf y- o?usp=sh aring	Test for difference	
					Bridge class	-6		

						<	Interaction Mithele Barchault	
32.			Test for ratio of variances (F-Test)	https://dri ve.google.c om/drive/f olders/1IH h13CrSJ_ KZXvp2Yi nMS6eDsy LOfy- o?usp=sha ring	https://dri ve.google. com/drive /folders/1 IHh13Cr SJ_KZXv p2YinMS 6eDsyLOf y- o?usp=sh aring	https://dri ve.google. com/drive /folders/1 IHh13Cr SJ_KZXv p2YinMS 6eDsyLOf y- o?usp=sh aring	Evaluate Test for ratio of variances	T1,R 1,R2
			UN	IT-IV: Com	plex Variable	es (Different	iation)	
33.			Limits, Continuity of Complex functions	https://dri ve.google.c om/drive/f olders/11H h13CrSJ_ KZXvp2Yi nMS6eDsy LOfy- o?usp=sha ring	https://dri ve.google. com/drive /folders/1 IHh13Cr SJ_KZXv p2YinMS 6eDsyLOf y- o?usp=sh aring	https://dri ve.google. com/drive /folders/1 IHh13Cr SJ_KZXv p2YinMS 6eDsyLOf y- o?usp=sh aring	Evaluate Limits & continuity	T3,R 4,R5
34.	10	4	Differentiation of Complex functions	https://dri ve.google.c om/drive/f olders/1IH h13CrSJ_ KZXvp2Yi nMS6eDsy LOfy- o?usp=sha ring	https://dri ve.google. com/drive /folders/1 IHh13Cr SJ_KZXv p2YinMS 6eDsyLOf y- o?usp=sh aring	https://dri ve.google. com/drive /folders/1 IHh13Cr SJ_KZXv p2YinMS 6eDsyLOf y- o?usp=sh aring	Evaluate Differenti ation of Complex functions	T3,R 4,R5

	_				<	INTERPORT OF THE DESIGN OF THE	
				Bridge class	-7		
35.		Analyticity of Complex functions	https://dri ve.google.c om/drive/f olders/11H h13CrSJ_ KZXvp2Yi nMS6eDsy LOfy- o?usp=sha ring	https://dri ve.google. com/drive /folders/1 IHh13Cr SJ_KZXv p2YinMS 6eDsyLOf y- o?usp=sh aring	https://dri ve.google. com/drive /folders/1 IHh13Cr SJ_KZXv p2YinMS 6eDsyLOf y- o?usp=sh aring	Understa nd Analyticit y	T3,R 4,R5
36.	11	Cauchy- Riemann equations (without proof)	https://dri ve.google.c om/drive/f olders/1IH h13CrSJ_ KZXvp2Yi nMS6eDsy LOfy- o?usp=sha ring	https://dri ve.google. com/drive /folders/1 IHh13Cr SJ_KZXv p2YinMS 6eDsyLOf y- o?usp=sh aring	https://dri ve.google. com/drive /folders/1 IHh13Cr SJ_KZXv p2YinMS 6eDsyLOf y- o?usp=sh aring	Evaluate C-R equations	T3,R 4,R5
37.		Problems	https://dri ve.google.c om/drive/f olders/1IH h13CrSJ_ KZXvp2Yi nMS6eDsy LOfy- o?usp=sha ring	https://dri	https://dri ve.google. com/drive /folders/1 IHh13Cr SJ_KZXv p2YinMS 6eDsyLOf y- o?usp=sh aring	Apply C- R equations	T3,R 4,R5
				Bridge class	-8	1	

38.		Harmonic conjugate	https://dri ve.google.c om/drive/f olders/11H h13CrSJ_ KZXvp2Yi nMS6eDsy LOfy- o?usp=sha ring	https://dri ve.google. com/drive /folders/1 IHh13Cr SJ_KZXv p2YinMS 6eDsyLOf y- o?usp=sh aring	https://dri ve.google. com/drive /folders/1 IHh13Cr SJ_KZXv p2YinMS 6eDsyLOf y- o?usp=sh aring	Understan d Harmonic conjugate	T3,R 4,R5
39.	12	Problems	https://dri ve.google.c om/drive/f olders/11H h13CrSJ_ KZXvp2Yi nMS6eDsy LOfy- o?usp=sha ring	https://dri ve.google. com/drive /folders/1 IHh13Cr SJ_KZXv p2YinMS 6eDsyLOf y- o?usp=sh aring	https://dri ve.google. com/drive /folders/1 IHh13Cr SJ_KZXv p2YinMS 6eDsyLOf y- o?usp=sh aring	Apply Harmonic conjugate	T3,R 4,R5
40.		Elementary analytic functions (exponential, trigonometric,l ogarithm) and their properties	https://dri ve.google.c om/drive/f olders/11H h13CrSJ_ KZXvp2Yi nMS6eDsy LOfy- o?usp=sha ring	https://dri ve.google. com/drive /folders/1 IHh13Cr SJ_KZXv p2YinMS 6eDsyLOf y- o?usp=sh aring	https://dri ve.google. com/drive /folders/1 IHh13Cr SJ_KZXv p2YinMS 6eDsyLOf y- o?usp=sh aring	Apply Elementary analytic functions	T3,R 4,R5
				Bridge class	- 9		<u> </u>

			-			<	UPARTING VALUE ENED EDUCATION	
41.			Problems	https://dri ve.google.c om/drive/f olders/11H h13CrSJ_ KZXvp2Yi nMS6eDsy LOfy- o?usp=sha ring	https://dri ve.google. com/drive /folders/1 IHh13Cr SJ_KZXv p2YinMS 6eDsyLOf y- o?usp=sh aring	https://dri ve.google. com/drive /folders/1 IHh13Cr SJ KZXv p2YinMS 6eDsyLOf V- o?usp=sh aring	Apply Elementary analytic functions	T3,R 4,R5
				UNIT-V: Con	nplex Variab	les (Integrat	ion)	
42.	13	5	Line integral	https://dri ve.google.c om/drive/f olders/1IH h13CrSJ_ KZXvp2Yi nMS6eDsy LOfy- o?usp=sha ring	https://dri ve.google. com/drive /folders/1 IHh13Cr SJ_KZXv p2YinMS 6eDsyLOf y- o?usp=sh aring	https://dri ve.google. com/drive /folders/1 IHh13Cr SJ_KZXv p2YinMS 6eDsyLOf y- o?usp=sh aring	Understa nd Line integral	T3,R 4,R5
43.		5	Cauchy's theorem	https://dri ve.google.c om/drive/f olders/11H h13CrSJ_ KZXvp2Yi nMS6eDsy LOfy- o?usp=sha ring	https://dri ve.google. com/drive /folders/1 IHh13Cr SJ_KZXv p2YinMS 6eDsyLOf y- o?usp=sh aring	https://dri ve.google. com/drive /folders/1 IHh13Cr SJ_KZXv p2YinMS 6eDsyLOf y- o?usp=sh aring	Understa nd Cauchy's theorem	T3,R 4,R5

STITS

						UNPARTING VALUE ENDED FIDULATION	
44.		Cauchy's	https://dri	https://dri	https://dri	Evaluate	
		Integral	ve.google.c	ve.google.	ve.google.	Cauchy's	
		formula	om/drive/f	com/drive	com/drive	Integral	
			olders/1IH	/folders/1	/folders/1	formula	
			h13CrSJ_	IHh13Cr	IHh13Cr		T3,R
			KZXvp2Yi	SJ_KZXv	SJ_KZXv		4,R5
			nMS6eDsy	p2YinMS	p2YinMS		7,105
			LOfy-	6eDsyLOf	6eDsyLOf		
			o?usp=sha	у-	У-		
			ring	o?usp=sh	o?usp=sh		
				aring	aring		
45.			https://dri	https://dri	https://dri	Apply	
			ve.google.c	ve.google.	ve.google.	Cauchy's	
			om/drive/f	com/drive	com/drive	Integral	
			olders/1IH	/folders/1	/folders/1	formula	
		D 11	h13CrSJ_	IHh13Cr	IHh13Cr		T3,R
	14	Problems	KZXvp2Yi	SJ_KZXv	SJ_KZXv		4,R5
	17		nMS6eDsy	p2YinMS	p2YinMS		, -
			LOfy-	6eDsyLOf	6eDsyLOf		
			o?usp=sha	y-	У-		
			ring	o?usp=sh	o?usp=sh		
1.6		7		aring	aring		
46.		Zeros of	https://dri	https://dri	https://dri	Understa	
		analytic	ve.google.c	ve.google.	ve.google.	nd &	
		functions with	om/drive/f	com/drive	com/drive	Apply	
		Problems	olders/1IH	/folders/1	/folders/1	Zeros of	
			h13CrSJ	IHh13Cr	IHh13Cr	analytic	T3,R
			KZXvp2Yi	SJ_KZXv	SJ_KZXv	functions	4,R5
			nMS6eDsy	p2YinMS	p2YinMS		
			LOfy-	6eDsyLOf	6eDsyLOf		
			o?usp=sha	y- o?usp=sh	y- o?usp=sh		
			ring	1	1		
				aring Pridge class	aring		
				Bridge class-	-10		

				<	WEATSNO WILLE BASED FEDUCATION	
47.	Singularities	https://dri ve.google.c om/drive/f olders/11H h13CrSJ_ KZXvp2Yi nMS6eDsy LOfy- o?usp=sha ring	https://dri ve.google. com/drive /folders/1 IHh13Cr SJ_KZXv p2YinMS 6eDsyLOf y- o?usp=sh aring	https://dri ve.google. com/drive /folders/1 IHh13Cr SJ_KZXv p2YinMS 6eDsyLOf y- o?usp=sh aring	Understa nd Singulariti es	T3,R 4,R5
48.	Problems	https://dri ve.google.c om/drive/f olders/11H h13CrSJ_ KZXvp2Yi nMS6eDsy LOfy- o?usp=sha ring	https://dri ve.google. com/drive /folders/1 IHh13Cr SJ_KZXv p2YinMS 6eDsyLOf y- o?usp=sh aring	https://dri ve.google. com/drive /folders/1 IHh13Cr SJ_KZXv p2YinMS 6eDsyLOf <u>y-</u> o?usp=sh aring	Evaluate Singulariti es	T3,R 4,R5
49.	Taylor's series	https://dri ve.google.c om/drive/f olders/11H h13CrSJ_ KZXvp2Yi nMS6eDsy LOfy- o?usp=sha ring	https://dri ve.google. com/drive /folders/1 IHh13Cr SJ_KZXv p2YinMS 6eDsyLOf y- o?usp=sh aring	https://dri ve.google. com/drive /folders/1 IHh13Cr SJ_KZXv p2YinMS 6eDsyLOf y- o?usp=sh aring	Understa nd Taylor's series	T3,R 4,R5
		1	Bridge class-	-11	1	1
			3			

e e

50.		Pro	blems	https://dri ve.google.c om/drive/f olders/11H h13CrSJ_ KZXvp2Yi nMS6eDsy LOfy- o?usp=sha ring	https://dri ve.google. com/drive /folders/1 IHh13Cr SJ_KZXv p2YinMS 6eDsyLOf y- o?usp=sh aring	https://dri ve.google. com/drive /folders/1 IHh13Cr SJ_KZXv p2YinMS 6eDsyLOf y- o?usp=sh aring	Evaluate Taylor's series	T3,R 4,R5
51.	15	Lau seri	irent's ies	https://dri ve.google.c om/drive/f olders/1IH h13CrSJ_ KZXvp2Yi nMS6eDsy LOfy- o?usp=sha ring	https://dri ve.google. com/drive /folders/1 IHh13Cr SJ_KZXv p2YinMS 6eDsyLOf y- o?usp=sh aring	https://dri ve.google. com/drive /folders/1 IHh13Cr SJ_KZXv p2YinMS 6eDsyLOf y- o?usp=sh aring	Understa nd Laurent's series	T3,R 4,R5
52.		Pro	blems	https://dri ve.google.c om/drive/f olders/11H h13CrSJ_ KZXvp2Yi nMS6eDsy LOfy- o?usp=sha ring	https://dri ve.google. com/drive /folders/1 IHh13Cr SJ_KZXv p2YinMS 6eDsyLOf y- o?usp=sh aring	https://dri ve.google. com/drive /folders/1 IHh13Cr SJ_KZXv p2YinMS 6eDsyLOf y- o?usp=sh aring	Evaluate Laurent's series	T3,R 4,R5
					Bridge class-	-12	1	1

Ê

						(Interstation Marchi Bridge) Education	
53.			https://dri	https://dri	https://dri	Understa	
			ve.google.c	ve.google.	ve.google.	nd &	
			om/drive/f	com/drive	com/drive	Evaluate	
		Residues,	olders/1IH	/folders/1	/folders/1	Residues	
		Cauchy	h13CrSJ_	IHh13Cr	IHh13Cr		T3,R
		Residue	KZXvp2Yi	SJ_KZXv	SJ_KZXv		4,R5
		theorem L o ri	nMS6eDsy	p2YinMS	p2YinMS		4,10
			LOfy-	6eDsyLOf	6eDsyLOf		
			o?usp=sha	у-	у-		
			ring	o?usp=sh	o?usp=sh		
				aring	aring		
54.			https://dri	https://dri	https://dri	Understa	
			ve.google.c	ve.google.	ve.google.	nd	
			om/drive/f	com/drive	com/drive	Conformal	
			olders/1IH	/folders/1	/folders/1	mappings	
		Conformal	h13CrSJ_	IHh13Cr	IHh13Cr		T3,R
		mappings	KZXvp2Yi	SJ_KZXv	SJ_KZXv		4,R5
		778-	nMS6eDsy	p2YinMS	p2YinMS		1,100
			LOfy-	6eDsyLOf	6eDsyLOf		
			o?usp=sha	у-	у-		
			ring	o?usp=sh	o?usp=sh		
				aring	aring		
55.			https://dri	https://dri	<u>https://dri</u>	Evaluate	
			ve.google.c	ve.google.	<u>ve.google.</u>	Mobius	
			om/drive/f	com/drive	<u>com/drive</u>	transforma	
		Mathing a	olders/1IH	/folders/1	<u>/folders/1</u>	tions	
		Mobius transformation	h13CrSJ_	IHh13Cr	<u>IHh13Cr</u>		T3,R
		s and their	KZXvp2Yi	SJ_KZXv	<u>SJ KZXv</u>		4,R5
		properties	nMS6eDsy	p2YinMS	<u>p2YinMS</u>		.,
	properties	LOfy-	6eDsyLOf	<u>6eDsyLOf</u>			
			o?usp=sha	у-	<u>y-</u>		
			ring	o?usp=sh	<u>o?usp=sh</u>		
				aring	<u>aring</u>		
				Bridge class-			
			Mi	d- II Examin	ations		

j

SUGGESTED BOOKS:

TEXT BOOKS:

 B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 35th Edition, 2010.
 Ronald E. Walpole, Raymond H. Myers, Sharon L. Myers, keying Ye, Probability and statistics for engineers and scientists, 9thEdition, Pearson Publications.

3.J. W. Brown and R. V. Churchill, Complex Variables and Applications, 7th Ed., Mc-Graw Hill, 2004

REFERENCES:

1. Fundamentals of Mathematical Statistics, Khanna Publications, SC.Gupta and V.K. Kapoor.

2. Miller and Freund's, Probability and Statistics for Engineers, 8th Edition, Pearson Educations

3. S. Ross, A First Course in Probability, 6th Ed., Pearson Education India, 2002.

4. Erwin kreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons,2006.

5. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications.

IX. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course Outcomes		Program Outcomes (PO)							Program Specific Outcomes (PSO)						
Course (P01	P02	P03	P04	P05	PO6	P07	PO8	P09	P010	P011	P012	PSO1	PSO2	PSO3
Ι	3	2	2	2	-	-	-	-	-	-	-	1	2	1	-
II	3	2	2	2	-	-	-	1	-	-	-	1	2	1	-
III	2	2	2	1	-	-	-	1	-	-	-	1	1	1	-
IV	3	3	2	2	-	-	-	-	-	-	-	1	2	1	-
V	3	2	2	2	-	-	-	-	-	-	-	1	2	1	-
AVG	2.8	2.2	2	1.8								1	1.8	1.0	-

1: Slight(Low)

2: Moderate (Medium)

3: Substantial(High) **4** : None

QUESTION BANK: (JNTUH)

UNIT - 1

S.No	Question	Blooms taxonomy level	Course outcome
1	In a class, 2% of the boys and 3% of girls are having blue eyes. There are 70% boys in the glass. A student is selected and having blue eyes. What is the probability that the student is girl?	Understand	1
2	Of the three men, the chances that a politician or businessman or an academician will be appointed as V.C of a university are 0.5, 0.3, and 0.2 respectively. Probabilities that these three persons promote research in the university, if they are appointed as V.C, are 0.3, 0.7, and 0.8 respectively. Determine i) The probability that the research ispromoted. ii) If research is promoted, what is the probability that V.C is politician?	Understand	1
3	State the axioms of probability of an event. State and prove addition theorem of probability.	Apply	1
4	Find the first four moments for the set of numbers 2,4,6,8.	Apply	1
5	A random variable X has the following probability function $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Apply	1
6	What is the probability for a leap year to have 52 Mondays and 53 Sundays?	Apply	1
7	Box A contains 5 red and 3 white marbles and box B contains 2red and 6 white marbles. If a marble is drawn from each box, what is the probability that they are both of same colour?	Understand	1
8	 A sample of 4 items is selected at random from a box containing 12 items of which 5 are defective. Find the expected number E of defective items. 	Apply	1
9	A continuous random variable has the probability density function $f(x) = \begin{cases} kxe^{-\lambda x}, \text{ for } x \ge 0\\ 0, \text{ otherwise} \end{cases}$ Determine (i) k (ii) Mean (iii) Variance	Apply	1
10	Given following probability distribution of X compute 1) $E(X)$ 2) $E(2x+3)$ 3) $E(X^2)$ 4) $V(2X+3)$ 4) $V(X)$ X -3 -2 -1 0 1 2 3 P(X) 0.05 0.10 0.30 0 0.30 0.15 0.10	Apply	1

UNIT I	Π
--------	---

	UNII II		
S.No	Question	Blooms taxonomy level	Course outcome
1	In a normal distribution 31% of the items are under 45 and 8% of the items are over 64. Find mean and standard deviation	Apply	2
2	If X is a poisson distribution such that $P(X=0) = P(X=2) + 3$ (X=4) Find (1)The mean of X (2) P (X ≤ 2)	Evaluate	2
3	Suppose the weights of 800 male students are normally distributed with mean $\mu = 140$ pounds and standard deviation is 10 pounds.Find the number of students whose weights are (1) between 138 and 148 pounds (2) more than 152 pounds.	Apply	2
4	20% of items produced from a factory are defective. Find the probability in a sample of 5 chosen at random 1) none is defective 2) one is defective 3) p $(1 < x < 4)$	Evaluate	2
5	Show that the Mean and Variance of Poisson distribution are equal.	Understand	2
6	Show that Poisson is a limiting case of Binomial distribution.	Understand	2
7	Find the probability that atmost 5 defective components will be found in a lot of 200. Experience shows that 2% of such components are defective also find the probability of more than 5 defective components.	Apply	2
8	Derive the Mean and Variance of Normal distribution?	Understand	2
9	Patients arrive at a clinic according to a Poisson distribution at the rate of 30 patients per hour. The waiting room does not accommodate more than 13 patients not including the one i.e., examine. Examination time per patient is exponential with mean rate 20 per hour.(a)Find the effective arrival rate at the clinic.	Apply	2
	(b)What is the probability that an arriving patient will not wait? What is the probability that he finds a vacant seat in the room?(c)What is the expected waiting until the patient is		

		UPARTING UNLIFE ASSED STALLATION	>
	discharged from the clinic?		
10	Suppose the weights of 800 male students are normally distributed with mean28.8 kg and standard deviation of 2.06 kg. Find the number of students whose weights are	Apply	2
	(i)between 28.4 kg and 30.4 kg (ii)more than 31.3 kg		

S.No	Question	Dlooms	Course
5.INU	Question	Blooms taxonomy	Course outcome
		level	outcome
1	A sample of size 300 was taken whose variance is 225 and		3
_	means 54 construct 95% confidence interval for the mean?	Apply	-
2	The guaranteed average life of a battery is 700 days with		3
	standard deviation of 60 days. It is required to sample the		
	output so as to ensure that 95% of the batteries do not fall short of guaranteed average life by more than 2.5%. What is	Apply	
	the minimum sample size?		
3	1		3
5	A random sample of 500 items has mean20 and another		5
	sample of size 400 has mean 15.Can you conclude that the two samples are taken from the same population with 4 as	Apply	
	Standard deviation.		
4	The nine items of a sample had values		3
-	45,47,50,52,48,47,49,53,and 51. Does the mean of the nine		5
	items differ significantly from the assumed population mean	Apply	
	of 47.57		
5	A survey of 320 families with 5 children each revealed the		3
	following distribution		5
	No 5 4 3 2 1 0		
	boys		
	No. of 0 1 2 3 4 5	Apply	
	Girls	rippiy	
	No. of f 14 56 110 8 40 1 milies		
	Is this result consistent with the hypothesis that male and		
	female births are equally probable?		
6	Ten specimens of copper wires drawn from a larger lot have		3
	the following breaking strength (in kg unit) 518, 572, 570,		
	568, 572, 578, 570, 572, 569, 548. Test whether the mean	Apply	
	breaking strengths of the lot may be taken to be 518 kg weight		
7	Prices of shares of a company on the different day in a month		3
	were found to be 66, 65, 69, 70, 69, 71, 70, 63, 63, 64 and 68.	Apply	
	Discuss whether the mean price of the shared in the month is		

UNIT III

		19-Ed	1
	65.		
8	A sample of 40 cam shafts intended for use in gasoline engines has on average eccentricity of 1.02 and a standard deviation of 0.044 inches. The data may be treated a random sample from a normal population. Determine a 99% confidence intervals for the actual mean eccentricity of the cam shaft	Apply	3
9	A lady stenographer claims that she can take the dictation at the rate of 120 words per minute. Can we reject our claim on the basis of 100 trails in which she demonstrates a mean of 116 words with a S.D of 15 words.	Apply	3
10	A random sample of 500 apples was taken from a large consignment and 60 were found to be bad. Obtain 98% confidence interval for the percentage number of bad apples in the consignment	Apply	3

S.No	Question	Blooms	Course
5.110		taxonomy level	outcome
1	If w = log z, find $\frac{dw}{dz}$ and determine where w is not-analytic.	Understand	4
2	Every analytic function $f(z) = u+iv$ defines two families of curves $u(x,y) = k_1$ and $v(x,y) = k_2$ forming an Orthogonal system.	Understand	4
3	Evaluate $\int (z^2+3z)dz$ along the straight line from (2,0) to (2,2) and then from (2,2) to (0,2).	Evaluate	4
4	Find the analytic function $f(z) = u + iv \text{ if } u - v = e^{X}(\cos y - \sin y)$	Apply	4
5	S.T $u(x, y) = e^{2x} (x \cos 2y - y \sin 2y)$ is Harmonic and find its Harmonic conjugate	Apply	4
6	Show that the both Real and Imaginary parts of an Analytic function are Harmonic.	Apply	4
7	Derive the polar form of Cauchy Riemann equation	Evaluate	4
8	Given $u(x, y) = e^{2x}(x \cos 2y - y \sin 2y)$, find its Analytic Function	Apply	4
9	Find the analytic function $f(z) = u+iv$ if $u-v = e^x (\cos y - \sin y)$ find $f(z)$ in terms of z.	Apply	4
10	Show that $f(x,y) = xy $ is analytic except at origin.	Apply	4

UNIT IV

UNIT	V
UNII	v

	UNIT	I	1
S.No	Question	Blooms taxonomy level	Course outcome
1	Expand $f(z) = \int \frac{1}{z^2 - 3z + 2}$ in the region $1 < z < 2$ by Laurent's series.	Apply	5
2	Verify Cauchy's theorem, for $\int Z^3 dz$, taken over the boundary of the rectangle with vertices -1, 1, (1+i), (-1+i)	Apply	5
3	Expand <i>sinhz</i> by Taylor's series about $z=\pi i$	Apply	5
4	Evaluate $\oint \frac{4z-3}{z(z-1)(z-2)} dz$, where C is the circle $ Z = \frac{3}{2}$ using Residue Theorem	Apply	5
5	$\int_{c} \frac{e^{2z}}{(z-1)(z-2)} dz, \text{ where } c \text{ is the circle } z = 3$ by Cauchy residue theorem	Apply	5
6	Verify Cauchy's theorem for the function $f(z) = 3z^2 + iz - 4$ if C is the square with vertices $(1+i)(1-i)(-1+i)(-1-i)$	Apply	5
7	Determine the poles of the function $\frac{z^2}{(z-1)^2(z+2)}$ and the Residues at each pole.	Apply	5
8	Find the fixed points of the transformation (i) $W = \frac{6z-9}{z}$ (ii) $W = \frac{z-i}{z+i}$	Apply	5
9	Find the Mobius transformation that maps the point $(-1,0,1)$ into the points $(0,i,3i)$	Apply	5
10	Find the Bilinear transformations which maps $(0,1,\infty)$ to $(-1, -2, -I)$	Apply	5

OBJECTIVE QUESTIONS:

UNIT I

1. Out of all the 2-digit integers between 1 and 100, a 2-digit number has to be selected at random. What is the probability that the selected number is not divisible by 7?

a) 13/20 b) 12/90 c) 78/90 d) 77/90 2. Suppose a fair six-sided die is rolled once. If the value on the die is 1, 2, or 3, the die is rolled a second time. What is the probability that the sum total of values that turn up is at least 6?

a) 10/21 b) 5/12 c) 2/3 d)	a) 10/21
----------------------------	----------

3. If two fair coins are flipped and at least one of the outcomes is known to be a head, what is the probability that both outcomes are heads?

a) R = 0 b) R < 0 c) R > = 0 d) R > 0

4. In random experiment, observations of random variable are classified as

a) events b) composition c) trials d) functions

5. Tail or head, one or zero and girl and boy are examples of

- a) non-functional events b) complementary events
- c) non complementary events d) functional events

6. Value which is obtained by multiplying possible values of random variable with probability of occurrence and is equal to weighted average is called

a) discrete valueb) weighted valuec) expected valued) cumulative value7. Types of probability distributions by taking their functions of considerations mustinclude

- a) posterior probability distribution b) discrete probability distribution
- c) continuous probability distribution d) both b and c

8. If value of p is 0.60 and value of n is 3 whereas random variable x is equal to 4 then value of z-score of distribution is

a) 1.59 b) 2.59 c) 2.68 d) 0.59

9. Probability distribution of discrete random variable is classified as

- a) probability mass function b) probability mass function
- c) interior mass function d) continuous mass function

10) If number of trials are 8 and probability of success are 0.65 then mean of negative probability distribution is

a)8.65 b) 12.31 c) 5.2 d) 7.35

1. A coin is tossed 3 times. The probability of obtaining two heads will be _____.

2. Maximum value of a probability is _____

3. if $f(x) = Ax^2$ in $0 \le x \le 1$ is a probability distribution function then A =_____

4. if k is a constant then variance(k)=_

5. The mean of the probability distribution of the number of heads obtained in two flips of a balanced coin is a _____.

6. If X an Y are independent random variable then E(XY)=_____

7. Let X be a random variable which is uniformly chosen from the set of positive odd numbers less than 100.then the expectation E(X) is ______

8. A six faced fair dice is rolled a large no. of times the mean of the outcomes is _____

9. The mean of the probability distribution of the number on face of a die in throwing a die is ______.

10. The probability of getting a tail in tossing a coil is_____.

UNIT II

1. Considering normal distribution, spread is increased and height of curve is decreased fora) smaller value of varianceb) larger value of variance

c) larger value of standard deviation d) smaller value of standard deviation

2. If μ is equal to 25 then value of mean for exponential probability distribution is

a) 0.4 b) 0.08 c) 0.07 d) 0.04

3. If z-score of normal distribution is 2.5, mean of distribution is 45 and standard deviation of normal distribution is 3 then value of x for a normal distribution is.

a) 97.5 b) 47.5 c) 37.5 d) 67.5

4. In standard normal probability distribution, z-score of distribution will be zero if

a) $x < \mu$ b) $x > \mu$ c) $x = \mu$ d) all of above

5. 2600 applications for home mortgage are received by a bank and probability of approval is 0.78 then standard deviation of binomial probability distribution is

a) 2028 b) 546.16 c) 446.16 d) 646.16

6. If mean of binomial probability distribution is 25 then mean of Poisson probability distribution is

a) 70 b) 50 c) 25 d) 40

7. In a negative binomial distribution of probability, random variable is also classified as

a) discrete random variable b) continuous waiting time random variable

c) discrete waiting time random variable d) discrete negative binomial variable

8. In binomial probability distribution, success and failure generated by trial is respectively denoted by

a) p and q b) a and b c) p+q d) p-q

9. If μ is equal to 8 then standard deviation of exponential probability distribution is

a) 0.425 b) 0.125 c) 0.225 d) 0.325

10. In Poisson probability distribution, if value of λ is integer then distribution will bea) bimodalb) unimodalc) positive modald) negative modal

- 2. If mean of the binomial distribution is 8 and variance is 6, the mode of this distribution is .
- 3. A coin is tossed 3 times. The probability of obtaining two heads will be _____.
- 4. The mean and variance of a Poisson distribution are _____.
- 5. The binomial distribution whose mean is 5 and variance is 10 is_____
- 6. The mean of binomial distribution is _____.
- 7. If the mean is 4 and variance is 2 of binomial distribution then p=_____
- 8. The value of p in a binomial distribution in terms of q is_____
- 9. p+q= _____ in a binomial distribution.
- 10. The mean of poisson distribution is ______.

UNIT III

- 1. Which of the following is true of the null and alternative hypotheses?
- a. Exactly one hypothesis must be true b. both hypotheses must be true
- c. It is possible for both hypotheses to be true d.It is possible for hypothesis to be true
- 2. A type II error occurs when
 - a. the null hypothesis is incorrectly accepted when it is false
 - b. the null hypothesis is incorrectly rejected when it is true
 - c. the null hypothesis is incorrectly rejected when it is true
 - d. the test is biased
- 3. The value set for α is known as
 - a. the rejection level b. the acceptance level
 - c. the significance level d. the error in the hypothesis test
- 4. The hypothesis that an analyst is trying to prove is called the
 - a. elective hypothesis b. alternative hypothesis
 - c. optional hypothesis d. null hypothesis
- 5. A null hypothesis can only be rejected at the 5% significance level if and only if:
- a. a 95% confidence interval includes the hypothesized value of the parameter
- b. a 95% confidence interval does not include the hypothesized value of the parameter
- c. the null hypothesis is void d. the null hypothesis is void
- 6. By taking a level of significance of 5% it is the same as saying
- a) We are 5% confident the results have not occurred by chance
- b) We are 95% confident that the results have not occurred by chance
- c) We are 95% confident that the results have occurred by chance

d) None of the above

7. Two types of errors associated with hypothesis testing are Type I and Type II. Type II error is committed when

a) We reject the null hypothesis whilst the alternative hypothesis is true

b) We reject a null hypothesis when it is true

c) We accept a null hypothesis when it is not true

d) all the above

8. For a random sample of 9 women, the average resting pulse rate is x = 76 beats per minute, and the sample standard deviation is s = 5. The standard error of the sample mean is a).0.557 b).0.745 c).1.667 d).2.778

9. Suppose a 95% confidence interval for the proportion of Americans who exercise regularly is 0.29 to 0.37. Which one of the following statements is FALSE?

a). It is reasonable to say that more than 25% of Americans exercise regularly.

b). It is reasonable to say that more than 40% of Americans exercise regularly.

c). The hypothesis that 33% of Americans exercise regularly cannot be rejected.

d). It is reasonable to say that fewer than 40% of Americans exercise regularly.

10. In hypothesis testing, a Type 2 error occurs when

a). The null hypothesis is not rejected when the null hypothesis is true.

- b). The null hypothesis is rejected when the null hypothesis is true.
- c). The null hypothesis is not rejected when the alternative hypothesis is true.
- d). The null hypothesis is rejected when the alternative hypothesis is true.
- 1. A hypothesis is true but rejected this is an error of type_
- 2. A hypothesis is false but accepted this is an error of type_____
- 3. A die is thrown 256 times an even digit turns up 150 times then die is _____
- 4. A single tail test is used when _____
- 5. Null hypothesis is defined as_____
- 6. Alternate hypothesis is defined as
- 7. 500 eggs are taken from a large consignment and 50 are found spoiled standard error of proportion is_____
- 8. Random sample of 400 products contains 52 defective items standard error of proportion is_____

9. A die is thrown 100 times an even digit turns up 10 times then die is _____.

10. Type II error in hypothesis testing is_____.

UNIT IV

1. Analytic function is

a) single valued function b) bounded function c) differential function d) all of these

2. The value of m so that $2x - x^2 + my^2$ may be harmonic is

a) 0 b)1 c)2 d)3

3. If $f(z) = \sin z$, then

a) f(z) is continuous in every finite region b) f(z) is not continuous in every finite region

c) f(z) is not continuous at 1 d) None 4. The value of $\int_{a}^{b} z dz =$ a) b-a b) $b^2 - a^2$ c) $\frac{1}{2}b^2 - a^2$ d) None 5. The function f(z) = xy + iy is a) every where continues but not analytic b) discontinuous everywhere but not analytic c) every where continuous and analytic d) neither continuous nor analytic 6. The value of m so that $2x - x^2 + my^2$ may be harmonic is a) 0 b)1 c)2 d)3 7. Let $f(z)=Z^2$, then f(1+3i) is a) 8-6i b) -8+6i c) -8-6i d) 8+6i 8. The Cauchy-Riemann equations in polar form a) $u_r = (1/r) v_{\theta}$, $v_r = -(1/r) u_{\theta}$ b) $u_{\theta} = (1/r) v_r$, $v_{\theta} = -(1/r) u_r$ c) 1, -1 d) None 9. The analytic function whose real part is $u=x^2 - y^2 - x$ b) z^2+z+c c)- z^2-z+c d) None a) z^2-z+c 10. If f(z) is analytic within and on a closed curve C, and if a is any point within C, then $\int_c \frac{dz}{z-a}$ c) f(a) / 2π a) f(a)b) $2\pi i f(a)$ d) $2\pi f$ 11. The harmonic conjugate of $x^3 - 3xy^2$ is ------12. For what values of a, b, c, the function f(z) = (x + ay) + i(bx + cy) is analytic. 14. Imaginary part of cos z -----. 15. $e^x \cos y$ Harmonic conjugate is _____ 16. Imaginary part of e^{2x} ------

17. Cauchy Riemann equations in Cartesian form

18. Every Analytic function with ______ is constant.

19. Cauchy- Riemann equations for a function to be analytic in polar form are _____

20. The function $f(z) = z^2$ is a function which is _

UNIT V

1. Polynomial of degree n has a pole of order n at

A) zero B) infinity C) anywhere D) curve c

2. The residue of $f(z) = \frac{1}{(z+2)^2(z-2)^2} at \ z = 2$ is ______

a)-1/32 b)-1/16 c)1/16 d)1/32

3. If the mapping w = f(z) is conformal then the function f(z) is

A) analytic B) non analytic C)harmonic D)none

4. The fixed point of the transformation $w = \frac{6z-9}{z}$ are

A) z =3,3 B) z = -3,3 C) z =-3 , -3 D) z =3i

5. Cauchy's integral theorem is applicable only for a _____ region R enclosed

a simple curve C. a)Simply connected b) Multiple connected c) Both A and B d) None 6. For $f(z) = \frac{\sin \sqrt{z}}{\sqrt{z}}, z = 0$ is b) Essential singularity c) Removable singularity d) None a) Simple pole 7. A point at which f(z) fails to be analytic is calledof f(z)a)Singular point b) null point c) zero point d) none 8. If $f(z) = z^2$ then $f(-2+i) = \dots$ a) 3+4i (b) 3-4i (c) 4-3i (d) none 9. If f(z) value at a such that f(a)=0. then a is called a) Zero b) pole c) simple pole d) None 10. If $f(z) = \frac{z}{8-z^3}$ then residue of f(z)atz = 2 is A)-1/8B)1/8 C)-1/6 D)1/6 1.. If $W = \log z$ is analytic everywhere except at z =------2. For what values of a, b, c, the function f(z) = (x + ay) + i(bx + cy) is analytic. 3. An analytic function f(z) is such that Re(f'(z)) = 2y & f(1+i) = 2 then the imaginary part of f(z) is 4 .The value of $\int_0^{4+2i} z dz$ is______ 5. If c is the circle |z - 3i| = 4 then $\oint \frac{dz}{z^2 + 9} =$ _____. 6. $\int \frac{\cos z}{z^3} \, \mathrm{at} \, |z| = 2 \, \mathrm{is}$ _____. 7. $\int \frac{z^2 - 4}{z^2 + 4} dz$ evaluated anticlockwise around the circle |z - i| = 2 is _____. 8. Given $f(z) = \frac{1}{z+1} - \frac{2}{z+3}$. If c is a counter clock wise path in the z-plane such that |z+1| = then the value of $\frac{1}{2\pi i} \oint f(z) dz$ is 9. The fixed points of $f(z) = \frac{2iz+5}{z-2i}$ are _____. 10. Find the radius of convergence of the series of the function $f(z) = \frac{1}{1-z}$ about $z = \frac{1}{4}$ is

WEBSITES:

- 1. www.mathworld.wolfram.com
- 2. <u>www.researchgate.net</u>
- 3. www.ocw.mit.edu
- 4. http://nptel.ac.in/courses/111105041/
- 5. http://nptel.ac.in/courses/111105035/
- 6. <u>http://nptel.ac.in/noc/individual_course.php?id=noc16-ma03</u>

EXPERT DETAILS: INTERNATIONAL

Prof. Gary A. Lorden,

Research Area:Probability and Statistics, Postal Address: Department of Mathematics California Institute of Technology, California Email ID: glorden@caltech.edu Assoc. Prof. Daniel C. Weiner Research Area:Probability, Randomness, Data analysis and Statistics Postal Address: Department of Mathematics Boston University, Boston, Massachusetts

Email ID: weiner@bu.edu

NATIONAL

Prof. <u>P. Vellaisamy</u>

Research Area: Applicable Mathematics, Statistics and Probability,

Postal Address: Department of Mathematics, IIT Mumbai. Email ID : pv@math.iitb.ac.in

Dr.Neelesh. S. Upadhye

Research Area : Applied Probability, Postal Address: Department of Mathematics, IIT, Chennai. Email ID: neelesh@iitm.ac.in

JOURNALS: INTERNATIONAL

- 1. Journal of American Mathematical Society
- 2. Journal of differential equations Elsevier
- 3. Pacific Journal of Mathematics
- 4. Journal of Australian Society
- 5. Bulletin of "The American Mathematical Society"
- 6. Bulletin of "The Australian Mathematical Society"
- 7. Bulletin of "The London Mathematical Society"

NATIONAL

- 1. Journal of Interdisciplinary Mathematics
- 2. Indian Journal of Pure and Applied Mathematics
- 3. Indian Journal of Mathematics
- 4. Proceedings of Mathematical Sciences
- 5. Journal of Mathematical and Physical Sciences.

6. Journal of Indian Academy and Sciences

LIST OF TOPICS FOR STUDENT SEMINARS:

- 1. Sample spaces and events.
- 2. Types of Distributions.
- 3. Test of Significance for Large and Small samples.
- 4. Complex variables and C-R eqns.
- 5. Mobius Transformations.

CASE STUDIES / SMALL PROJECTS:

- 1. To estimate the percentage of students.
- 2. To survey Medical and health research.
- 3. To conduct case study using F-test for sick and cured patients.